# Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal 

## Numerical Methods - MA 207

Numerical Solutions of Algebraic and Transcendental Equations

1. Find a root of the equation $x^{3}-4 x-9=0$, using bisection method correct to 3 decimal places.
2. Find the root of the equation $\cos x=x e^{x}$ using bisection method correct to 4 decimal places.
3. Find a real root of the equation $\cos x=3 x-1$ correct to 3 decimal places using iterative method.
4. Using fixed point iterative method, find a root of the equation $x^{3}+x^{2}-100=0$ correct to 4 decimal places.
5. Apply method of iteration to find the negative root of the equation $x^{3}-2 x+5=0$ correct to 4 decimal places.
6. Find a real root of $2 x-\log _{10} x=7$ correct to 4 decimal places using iterative method.
7. Find the smallest root of the equation

$$
1-x+\frac{x^{2}}{(2!)^{2}}-\frac{x^{3}}{(3!)^{2}}+\frac{x^{4}}{(4!)^{2}}-\frac{x^{5}}{(5!)^{2}}+\cdots=0
$$

8. Find the positive root of $x^{4}-4=0$ correct to 3 decimal places using Newton-Raphson method.
9. Find the root of the equation $x e^{x}=\cos x$ using the secant method correct to 4 decimal places.
10. Find a real root of the equation $x^{3}-2 x-5=0$ which lies between 2 and 3 by the method of false position correct to 3 decimal places.
11. Evaluate the following (correct to 4 decimal places) by Newton's iterative method.
(a) $1 / 31$
(c) $1 / \sqrt{14}$
(e) $30^{-\frac{1}{5}}$
(b) $\sqrt{5}$
(d) $\sqrt[3]{24}$
(f) $22 / 7$.
12. Find the real root of the equation

$$
x-\frac{x^{3}}{3}+\frac{x^{5}}{10}-\frac{x^{7}}{42}+\frac{x^{9}}{216}-\frac{x^{11}}{1320} \cdots=0.4331135
$$

correct to 4 places of decimals.
13. Using Newton-Raphson method, find correct to 4 decimal places, the root between 0 and 1 of the equation $x^{3}-6 x+4=0$.
14. Find, by Newton's method, the root of the equation $e^{x}=4 x$, which is approximately 2 , correct to 3 places of decimals.
15. Using Newton-Raphson method, establish the formula $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{N}{x_{n}}\right)$ to calculate the square root of $N$. Hence find the square root of 5 correct to 4 places of decimals.
16. Show that the iterative formula for finding the reciprocal of $N$ is $x_{n+1}=x_{n}\left(2-N x_{n}\right)$ and hence find the value of $1 / 31$.
17. Apply Newton's formula to find the root of $x^{4}-x=10$, which is nearer to $x=2$.
18. Solve the equation $x=\frac{1}{2}+\sin x$ using iterative methods.
19. The equation $x^{6}-x^{4}-x^{3}-1=0$ has one real root between 1.4 and 1.5. Find the root to 4 decimal places by false position method.
20. Apply Newton's method to obtain the real root of the equation $x \log _{10} x=4.7772393$, correct to 6 places of decimals.
21. Find the root of the equation $x e^{x}=3$ using the regula-falsi method correct to 4 decimal places.
22. Find a positive real root of $x \log _{10} x=1.2$ using bisection method.
23. Find by Newton's method, the real root of the equation $3 x=\cos x+1$, correct to 4 decimal places.
24. Find a root of the equation $x^{3}-2 x-5=0$ using secant method correct to 3 decimal places.
25. Using Newton's iterative method, find the real root of $x \log _{10} x=1.2$ correct to 5 decimal places.
26. Starting with $x=0.12$, solve $x=0.21 \sin (0.5+x)$ by using iterative method.
27. Obtain the more general formula for the root of $f(x)=0$,

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}-\frac{1}{2} \frac{\left\{f\left(x_{0}\right)\right\}^{2} f^{\prime \prime}\left(x_{0}\right)}{\left\{f^{\prime}\left(x_{0}\right)\right\}^{3}} .
$$

28. Show that the modified Newton-Raphson method

$$
x_{n+1}=x_{n}-\frac{2 f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

gives a quadratic convergence when the equation $f(x)=0$ has a pair of double roots in the neighbourhood of $x=x_{n}$.
29. Show that following two sequences, both have convergence of the second order with the same limit $\sqrt{a}$.

$$
x_{n+1}=\frac{1}{2} x_{n}\left(1+\frac{a}{x_{n}^{2}}\right) \text { and } x_{n+1}=\frac{1}{2} x_{n}\left(3-\frac{x_{n}^{2}}{a}\right) .
$$

30. Given that the equation $x^{2.2}=69$ has a root between 5 and 8 . Use the method of regula-falsi to determine it.
31. Find a real root by iteration method of the equation $x^{3}+x^{2}-1=0$ on the interval $[0,1]$ with an accuracy of $10^{-4}$.
32. Prove that the order of convergence of the Newton-Raphson's method is 2.
33. Find a real root of the equation $x \log _{10} x=1.2$ by regula-falsi method correct to 4 decimal places.
34. Solve the equations $x=x^{2}+y^{2}, y=x^{2}-y^{2}$ using Newton-Raphson method with the approximation (0.8, 0.4).
35. Use Newton-Raphson method to solve the equations $x^{2}-y^{2}=4, x^{2}+y^{2}=16$ with $x_{0}=y_{0}=2.828$.
36. Find a root of the system of nonlinear equations by Newton-Raphson method, $x^{2}+y=11, y^{2}+x=7$ with $x_{0}=3.5$ and $y_{0}=-1.8$.
37. Solve the system of equations $\sin x y+x-y=0 y \cos x y+1=0$ with $x_{0}=1$ and $y=2$, by NewtonRaphson's method.
38. Find the root of $\tan x+x=0$ upto 2 decimal places, which lies between 2 and 2.1.
39. Show that the order of convergence of the secant method is 1.618 approximately.
40. Determine the order of convergence of the regula-falsi method. (Answer : 1.618, same as the order of convergence of the secant method.)
41. Use the method of false position, to find the fourth root of 32 correct to 3 decimal places.
42. Find the roots of the equation

$$
2 e^{-x}=\frac{1}{x+2}+\frac{1}{x+1}
$$

which has 2 roots greater than -1 . Find these roots correct to 5 decimal places.
43. By using the Newton-Raphson method, find a root of the equation $1-\cosh x \cdot \cos x=0$, correct to 4 decimal places, with $x_{0}=0.15$ as an initial approximation.
44. Using bisection method, find the negative root of the equation $x^{2}+\cos x-2=0$.
45. Using the Newton-Raphson method, find the real root of the equation $x \sin x+\cos x=0$ near $x=\pi$. Carry out 4 iterations. Here $x$ is in radians.
46. Newton-Raphson method for solving the equation $f(x)=c$, where $c$ is a real-valued constant, is applied to the function

$$
f(x)= \begin{cases}\cos x & \text { when }|x| \leq 1 \\ \cos x+\left(x^{2}-1\right)^{2} & \text { when }|x| \geq 1 .\end{cases}
$$

For which $c$ is $x_{i}=(-1)^{i}$, when $x_{0}=1$, and the calculation is carried out with no error 1 .
47. Verify the equation

$$
e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6} e^{0.3 x}
$$

has a root between 2 and 3 . Find this root correct to 3 decimal places.
48. Solve $x^{2}+3 x-y-1=0 x y+3 y+9=0$ starting with the approximation $x_{0}=-4, y_{0}=6$.
49. Solve $x=1+\tan ^{-1} x$ by the method of iteration.
50. By the fixed point iteration process, find the root correct to 3 decimal places, of the equation $x=\cos x$ near $x=\pi / 4$.
51. Using bisection method, find an approximate root of the equation $\sin x=1 / x$, that lies between $x=1$ and $x=1.5$ (measured in radians). Carry out computations upto 7 th stage.
52. Solve the Keplar's equation iteratively for $m=0.8, E=0.2$ by writing in the form $x=m+E \sin x$ and starting with $x_{0}=m=0.8$.
53. Find a double root of the equation $f(x)=x^{3}-x^{2}-x+1=0$.

