sam.nitk.ac.in

nitksam@gmail.com

Numerical Methods - MA 207 Numerical Solutions of Algebraic and Transcendental Equations

- 1. Find a root of the equation $x^3 4x 9 = 0$, using bisection method correct to 3 decimal places.
- 2. Find the root of the equation $\cos x = x e^x$ using bisection method correct to 4 decimal places.
- 3. Find a real root of the equation $\cos x = 3x 1$ correct to 3 decimal places using iterative method.
- 4. Using fixed point iterative method, find a root of the equation $x^3 + x^2 100 = 0$ correct to 4 decimal places.
- 5. Apply method of iteration to find the negative root of the equation $x^3 2x + 5 = 0$ correct to 4 decimal places.
- 6. Find a real root of $2x \log_{10} x = 7$ correct to 4 decimal places using iterative method.
- 7. Find the smallest root of the equation

$$1 - x + \frac{x^2}{(2!)^2} - \frac{x^3}{(3!)^2} + \frac{x^4}{(4!)^2} - \frac{x^5}{(5!)^2} + \dots = 0.$$

- 8. Find the positive root of $x^4 4 = 0$ correct to 3 decimal places using Newton-Raphson method.
- 9. Find the root of the equation $x e^x = \cos x$ using the secant method correct to 4 decimal places.
- 10. Find a real root of the equation $x^3 2x 5 = 0$ which lies between 2 and 3 by the method of false position correct to 3 decimal places.
- 11. Evaluate the following (correct to 4 decimal places) by Newton's iterative method.
 - (a) 1/31 (c) $1/\sqrt{14}$ (e) $30^{-\frac{1}{5}}$
 - (b) $\sqrt{5}$ (d) $\sqrt[3]{24}$ (f) 22/7.
- 12. Find the real root of the equation

$$x - \frac{x^3}{3} + \frac{x^5}{10} - \frac{x^7}{42} + \frac{x^9}{216} - \frac{x^{11}}{1320} \dots = 0.4331135$$

correct to 4 places of decimals.

- 13. Using Newton-Raphson method, find correct to 4 decimal places, the root between 0 and 1 of the equation $x^3 6x + 4 = 0$.
- 14. Find, by Newton's method, the root of the equation $e^x = 4x$, which is approximately 2, correct to 3 places of decimals.
- 15. Using Newton-Raphson method, establish the formula $x_{n+1} = \frac{1}{2}(x_n + \frac{N}{x_n})$ to calculate the square root of *N*. Hence find the square root of 5 correct to 4 places of decimals.
- 16. Show that the iterative formula for finding the reciprocal of *N* is $x_{n+1} = x_n(2 Nx_n)$ and hence find the value of 1/31.
- 17. Apply Newton's formula to find the root of $x^4 x = 10$, which is nearer to x = 2.

- 18. Solve the equation $x = \frac{1}{2} + \sin x$ using iterative methods.
- 19. The equation $x^6 x^4 x^3 1 = 0$ has one real root between 1.4 and 1.5. Find the root to 4 decimal places by false position method.
- 20. Apply Newton's method to obtain the real root of the equation $x \log_{10} x = 4.7772393$, correct to 6 places of decimals.
- 21. Find the root of the equation $xe^x = 3$ using the regula-falsi method correct to 4 decimal places.
- 22. Find a positive real root of $x \log_{10} x = 1.2$ using bisection method.
- 23. Find by Newton's method, the real root of the equation $3x = \cos x + 1$, correct to 4 decimal places.
- 24. Find a root of the equation $x^3 2x 5 = 0$ using secant method correct to 3 decimal places.
- 25. Using Newton's iterative method, find the real root of $x \log_{10} x = 1.2$ correct to 5 decimal places.
- 26. Starting with x = 0.12, solve $x = 0.21 \sin(0.5 + x)$ by using iterative method.
- 27. Obtain the more general formula for the root of f(x) = 0,

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} - \frac{1}{2} \frac{\{f(x_0)\}^2 f''(x_0)}{\{f'(x_0)\}^3}.$$

28. Show that the modified Newton-Raphson method

$$x_{n+1} = x_n - \frac{2f(x_n)}{f'(x_n)}$$

gives a quadratic convergence when the equation f(x) = 0 has a pair of double roots in the neighbourhood of $x = x_n$.

29. Show that following two sequences, both have convergence of the second order with the same limit \sqrt{a} .

$$x_{n+1} = \frac{1}{2}x_n\left(1 + \frac{a}{x_n^2}\right)$$
 and $x_{n+1} = \frac{1}{2}x_n\left(3 - \frac{x_n^2}{a}\right)$.

- 30. Given that the equation $x^{2.2} = 69$ has a root between 5 and 8. Use the method of regula-falsi to determine it.
- 31. Find a real root by iteration method of the equation $x^3 + x^2 1 = 0$ on the interval [0,1] with an accuracy of 10^{-4} .
- 32. Prove that the order of convergence of the Newton-Raphson's method is 2.
- 33. Find a real root of the equation $x \log_{10} x = 1.2$ by regula-falsi method correct to 4 decimal places.
- 34. Solve the equations $x = x^2 + y^2$, $y = x^2 y^2$ using Newton-Raphson method with the approximation (0.8, 0.4).
- 35. Use Newton-Raphson method to solve the equations $x^2 y^2 = 4$, $x^2 + y^2 = 16$ with $x_0 = y_0 = 2.828$.
- 36. Find a root of the system of nonlinear equations by Newton-Raphson method, $x^2 + y = 11$, $y^2 + x = 7$ with $x_0 = 3.5$ and $y_0 = -1.8$.
- 37. Solve the system of equations $\sin xy + x y = 0$ $y \cos xy + 1 = 0$ with $x_0 = 1$ and y = 2, by Newton-Raphson's method.
- 38. Find the root of $\tan x + x = 0$ upto 2 decimal places, which lies between 2 and 2.1.

- 39. Show that the order of convergence of the secant method is 1.618 approximately.
- 40. Determine the order of convergence of the regula-falsi method. (Answer : 1.618, same as the order of convergence of the secant method.)
- 41. Use the method of false position, to find the fourth root of 32 correct to 3 decimal places.
- 42. Find the roots of the equation

$$2e^{-x} = \frac{1}{x+2} + \frac{1}{x+1}$$

which has 2 roots greater than -1. Find these roots correct to 5 decimal places.

- 43. By using the Newton-Raphson method, find a root of the equation $1 \cosh x \cdot \cos x = 0$, correct to 4 decimal places, with $x_0 = 0.15$ as an initial approximation.
- 44. Using bisection method, find the negative root of the equation $x^2 + \cos x 2 = 0$.
- 45. Using the Newton-Raphson method, find the real root of the equation $x \sin x + \cos x = 0$ near $x = \pi$. Carry out 4 iterations. Here *x* is in radians.
- 46. Newton-Raphson method for solving the equation f(x) = c, where *c* is a real-valued constant, is applied to the function

$$f(x) = \begin{cases} \cos x & \text{when } |x| \le 1\\ \cos x + (x^2 - 1)^2 & \text{when } |x| \ge 1. \end{cases}$$

For which *c* is $x_i = (-1)^i$, when $x_0 = 1$, and the calculation is carried out with no error 1.

47. Verify the equation

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}e^{0.3x}$$

has a root between 2 and 3. Find this root correct to 3 decimal places.

- 48. Solve $x^2 + 3x y 1 = 0$ xy + 3y + 9 = 0 starting with the approximation $x_0 = -4$, $y_0 = 6$.
- 49. Solve $x = 1 + \tan^{-1} x$ by the method of iteration.
- 50. By the fixed point iteration process, find the root correct to 3 decimal places, of the equation $x = \cos x$ near $x = \pi/4$.
- 51. Using bisection method, find an approximate root of the equation $\sin x = 1/x$, that lies between x = 1 and x = 1.5 (measured in radians). Carry out computations up to 7th stage.
- 52. Solve the Keplar's equation iteratively for m = 0.8, E = 0.2 by writing in the form $x = m + E \sin x$ and starting with $x_0 = m = 0.8$.
- 53. Find a double root of the equation $f(x) = x^3 x^2 x + 1 = 0$.
